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Department of Physics, Tamkang University, Tamsui, Taiwan 25137, Republic of China

Received 17 November 1995

Abstract. We discussw∞ andslq (2) symmetries in multiple Chern–Simons theory on a torus.
It is shown that these algebraic structures arise from the dynamics of the non-integrable phases
of the Chern–Simons fields. The generators of these algebras are constructed from the Wilson
line operators corresponding to these phases. The vacuum states form the basis of cyclic
representation ofslq (2).

In the last decade the studies of qauntum groups and algebras have attracted a lot of interest.
One can already see the great impact these studies have had in physics and mathematics.
The concept of quantum groups and algebras has its origin in the development of the
quantum inverse method and the study of solutions to the Yang–Baxter equation [1]. These
new mathematical structures have already found applications in exactly solvable statistical
models, in two-dimensional conformal field theory and in non-Abelian Chern–Simons (CS)
theory [2]. Undoubtedly, it is of interest to find applications of these concepts in other
important systems, especially realistic ones.

Recently aslq(2) quantum group symmetry has been uncovered in the Landau problem
(i.e. a charged particle moving in a constant magnetic field) and in the related problem of
fractional quantum Hall effects (FQHE) [3–8]. A quantumw∞ algebra, also known as the
FFZ [9] algebra, has also been realized in these systems [4, 5, 10, 11]. A representation of
the quantum algebraslq(2) was applied to formulate the Bethe ansatz for the problem of a
Bloch electron in a magnetic field, i.e. the Azbel–Hofstadter problem [3, 12, 13].

On the other hand, Abelian Chern–Simons field theory with matter coupling has attracted
intense interest in recent years, owing to its relevance to condensed matter systems such
as quantum Hall systems, and possibly high-Tc superconductors. Many studies have also
been carried out for the Maxwell–Chern–Simons theory in which a Maxwell kinetic term
is included. An interesting observation is that the dynamics in the topological sector of
Maxwell–Chern–Simons theory on a torus is equivalent to the Landau problem on a torus.
Thus many interesting features are shared by both systems. In fact, the quantum algebras
mentioned previously were also found in the Maxwell and the pure CS theory on a torus
[5, 7].

In this letter we would like to extend these results to a theory on a torus in which
multiple kinds of Chern–Simons gauge interactions are introduced among particles [14]. It
is known that multiple Chern–Simons interactions induce matrix statistics which generalize
ordinary fractional statistics in the space of particle species. A possible application of the
theory is in double-layered Hall systems [14, 15].

0305-4470/96/050107+07$19.50c© 1996 IOP Publishing Ltd L107



L108 Letter to the Editor

Let us consider a theory on a torus (of lengthsL1 andL2) with M distinct CS gauge
fields, aI

µ (I = 1, . . . , M) and nonrelativistic matter fields. The theory is described by the
LagrangianL = LCS + Lmatter, where the Chern–Simons termLCS is given by

LCS = 1

4π

∑
IJ

KIJ aI ε∂aJ (I, J = 1, . . . , M)

(ε∂a)µ ≡ εµνρ∂νaρ.

(1)

HereKIJ is a M × M real symmetric matrix. Properties of this theory are studied in [16],
and we refer the reader to this reference for details. Only those features relevant to the
present discussions are summarized below.

On the torus, for each CS field there are two non-integrable phases,θI
j (j = 1, 2), of

the Wilson line integrals along the two non-contractible loops of the torus. These phases
are new degrees of freedom undetermined by the matter content, and their contributions are
found to be decoupled in the action of the theory. They are responsible for the topological
structures of the theory. We will be interested only in the structures of the Hilbert space of
these Wilson line phases in the rest of the letter.

In [16] it has been found that the Lagrangian corresponding to the Wilson line phases
is of the formKIJ (θI

2 θ̇ J
1 − θI

1 θ̇ J
2 )/4π . This implies thatθI

1 ’s andθI
2 ’s are conjugate pairs:

[θI
1 , θJ

2 ] = 2π iK−1
IJ (2)

whereK−1
IJ is the IJ -component of the matrixK−1. The system is invariant under large

gauge transformations which shift the Wilson line phases by multiples of 2π :

UI
j : θI

j → θI
j + 2π. (3)

Unitary operators inducing the transformation (3) are given by

UI
j = e+iεjkKIJ θJ

k . (4)

The two sets of operators,{UI
j } and{WI

j }, are complimentary. They satisfy the Weyl–
Heisenberg (WH) relations:

UI
1 UJ

2 = e−2π iKIJ UJ
2 UI

1

WI
1 WJ

2 = e−2π iK−1
IJ WJ

2 WI
1

UI
j WJ

k = WJ
k UI

j .

(5)

Note that these operators do not commute with each other in general. The algebra is
invariant under the interchange ofUI

j and WI
j supplemented by the replacement ofKIJ

by K−1
IJ . This suggests that there is a duality between the theories with the Chern–Simons

coefficient matrixK and withK−1.
We would like to determine vacuum wavefunctions that form a representation of the

WH group (5). From now on we shall suppose that allKIJ ’s are integers so that all the
UI

j ’s commute among themselves. We may thus simultaneously diagonalize these operators
and take

UI
j |9〉 = eiγ I

j |9〉 (6)

where γ I
j are the vacuum angles. For convenience we introduce vector notation:θj =

(θ1
j , . . . , θM

j ), γj = (γ 1
j , . . . , γ M

j ), etc. It has been shown that the degeneracy of vacua
is r = detK [16, 17]. An independent basis of vacua|ha〉 can be chosen as (in theθ1

representation) [16]:

〈θ1|ha〉 ≡ ua(θ1) = eiγ1·θ1/2πδ2π [θ1 + K−1γ2 − ha] (a = 1, . . . , r = detK). (7)
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The set of vectorsH(K) = {ha} is defined by

H(K) = {ha ∈ RM, (a = 1, . . . , r); Kha ∼ 0} (8)

where the equivalence relation∼ among vectors∈ RM is defined by:

h ∼ g ⇐⇒ hI = gI (mod 2π) I = 1, . . . , M. (9)

Vectors inH(K) are independent in the sense thatha 6∼ hb iff a 6= b.
The actions of the Wilson lines on the vacuum are:

WI
1 |ha〉 = e−ilI ·γ2−ihI

a |ha〉
WI

2 |ha〉 = e+ilI ·γ1|ha − 2πlI 〉.
(10)

Here lI are the column vectors of the matrixK−1: K−1 = (l1, . . . , lM). Note that, ifkI

are the column vectors ofK : K = (k1, . . . ,kM), then we have the orthogonality relation:
kI ·lJ = δIJ . It is easy to see thatWI

2 induces a mapping among the vacua. In fact, we have
K(ha − 2πlI ) ∼ 0, so thatha − 2πlI ∈ H. If there exists aK−1

IJ such that exp(2π iK−1
IJ )

is a primitiverth root of unity, i.e.r is the least integer such thatqr = 1, then(WJ
2 )r ∼ I ,

andWJ
2 maps all ther distinct vacua among themselves.

We can now reveal the qauntum algebraic structures inherent in the theory. First let us
form, from theWI

j , the following operators:

Tn = T(n1,n2) ≡ qn1n2/2(WI
1 )n1(WJ

2 )n2 (11)

whereq ≡ e2π iK−1
IJ , andn1, n2 are integers. Note here that there areM × M possible sets

of operatorsT , depending on the choice ofI andJ . From the WH algebras (5) one gets:

TmTn = q−m×n/2Tm+n (12)

wherem × n = m1n2 − m2n1. Equation (12) implies

[Tm, Tn] = −2i sin(iπK−1
IJ (m × n))Tm+n. (13)

This is nothing but the quantumw∞ (FFZ) algebra.
Next we construct the operatorsJ± andJ3 from theT ’s as follows [4–7]:

J+ ≡ 1

q − q−1
(T(1,1) − T(−1,1))

J− ≡ 1

q − q−1
(T(−1,−1) − T(1,−1))

q2J3 ≡ T(−2,0) q−2J3 ≡ T(2,0).

(14)

Using (12), one can show that

qJ3J±q−J3 = q±1J±
[J+, J−] = [2J3]q

(15)

where [x] ≡ (qx − q−x)/(q − q−1). These are the defining relations of the quantum algebra
slq(2), and theJ ’s constructed according to (14) are just the generators of this algebra.

We shall now show that the vacua form the basis of the representation of theslq(2)

algebra. To do this, we need to know the actions ofTn on the state|ha〉. From the definition
of Tn (11) and the WH algebra (5), we find

Tn|ha〉 = q−n1n2/2ei(n2lJ ·γ1−n1lI ·γ2+n1h
I
a)|ha − 2πn2lJ 〉. (16)

In obtaining (16), use has been made of the fact that theI th component oflJ is K−1
IJ .
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With the help of (16), it is easy to obtain the actions of theJ ’s on the state vectors
|ha〉:

J+|ha〉 = eilJ ·γ1[(2πK−1
IJ )−1(hI

a − lI · γ2) − 1
2]q |ha − 2πlJ 〉

J−|ha〉 = −e−ilJ ·γ1[(2πK−1
IJ )−1(hI

a − lI · γ2) + 1
2]q |ha + 2πlJ 〉

q±2J3|ha〉 = q∓(πK−1
IJ )−1(hI

a−lI ·γ2)|ha〉.
(17)

SinceWJ
2 induces a mapping among the vacua as mentioned before, the vacuaha will

in general form a cyclic representation ofslq(2) [18]. SupposeK−1
IJ is such thatq ≡ e2π iK−1

IJ

is a rth root of unity, then the cyclic representation is irreducible, and is of dimensionr.
Highest weight representation, however, could sometimes be obtained with an appropriate
choice of the vacuum angles, as discussed in [7].

We now apply these results to two cases relevant to the FQHE.

Case I.K =
(

3 2
2 3

)
.

A theory defined by thisK matrix serves as an alternative way of describing the first
daughter state in the FQHE. ThisK gives

K−1 = 1

5

(
3 −2

−2 3

)
detK = 5. (18)

The ha for the vacua in (7) is chosen to be

ha = 2πa

5
1 (a = 0, . . . , 4). (19)

For simplicity, we label the vacua|ha〉 by |a〉. They satisfy|a + 5〉 = |a〉. VectorslI ’s
are given by

l1 = 1

5

(
3

−2

)
l2 = 1

5

( −2
3

)
(20)

and

ha − 2πlI ∼ ha+2. (21)

From (10), we have,

WI
1 |a〉 = e−ilI ·γ2+2π ia/5|a〉

WI
2 |a〉 = e+ilI ·γ1|a + 2〉. (22)

As M = 2 in this case, there are altogether four possible ways of forming theT operators
according to (11), and therefore there exist four possible sets each of the quantumw∞ and
slq(2) algebras. Note here that all theq ’s formed from the fourK−1

IJ are primitiverth root
of unity. Suppose we form the operatorsTn with I = 1 andJ = 2. ThenK−1

12 = − 2
5 and

q = e−4π i/5. The actions ofJ±,3 as defined in (14) on the vacuum states are evaluated to
be

J+|a〉 = eiβ1/5

[
−a

2
+ α2

4π
− 1

2

]
q

|a + 2〉

J−|a〉 = −e−iβ1/5

[
−a

2
+ α2

4π
+ 1

2

]
q

|a − 2〉

q±2J3|a〉 = q±2((a/2)−(α2/4π))|a〉

(23)

whereαi ≡ 3γ
(1)
i − 2γ

(2)
i andβi ≡ −2γ

(1)
i + 3γ

(2)
i .
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It turns out that in this case there is, in addition to the four possible sets ofJ ’s mentioned
before, another set of generators ofslq(2) algebra. This is seen as follows. In [16] it
is shown that, under appropriate coupling with matter fields, the multiple CS theory is
effectively equivalent to a single CS theory with an effective Chern–Simons coefficient
given by κ−1

eff = ∑
I,J K−1

IJ . κeff is in general a rational number,κeff = p/q (p and q are
two mutually prime integers), even if allKIJ ’s are integers. The effective Wilson line
operatorsW̄i are related to theWI

i in the multiple CS theory byW̄i = W
(1)
i W

(2)
i , and satisfy

the WH algebra:

W̄1W̄2 = q̄−1W̄2W̄1 q̄ ≡ e2π i/κeff . (24)

In the present case, one hasκeff = 5
2. The actions ofW̄ ’s on |a〉 are

W̄1|a〉 = e−i(λ2−4πa)/5|a〉
W̄2|a〉 = eiλ1/5|a − 1〉 (25)

whereλj ≡ γ
(1)

j + γ
(2)

j . One can now define a new set ofslq̄ (2) generatorsJ̄ ’s according

to (14), with theW ’s replaced by theW̄ ’s. The actions ofJ̄ are found to be

J̄+|a〉 = eiλ1/5

[
a − λ2

4π
− 1

2

]
q̄

|a − 1〉

J̄−|a〉 = −e−iλ1/5

[
a − λ2

4π
+ 1

2

]
q̄

|a + 1〉

q̄±2J3|a〉 = q̄∓2(a−λ2/4π)|a〉.

(26)

These expressions are precisely those obtained in [5, 7] for the case of single CS theory.

Case II.K =
(

5 3
3 3

)
.

This case corresponds to a filling factor1
3 in the FQHE. We have in this case

K−1 = 1

6

(
3 −3

−3 5

)
detK = 6 κeff = 3. (27)

A choice{ha} for the vacua can be chosen to be

ha = πa

3

(
3

−5

)
(a = 0 ∼ 5). (28)

We note that|a + 6〉 = |a〉. This time we have

l1 = 1

2

(
1

−1

)
l2 = 1

6

( −3
5

)
(29)

so that

ha − 2πl1 ∼ ha−3

ha − 2πl2 ∼ ha+1.
(30)

Hence the actions of Wilson line operators are given by (we set the vacuum anglesγi = 0
for simplicity)

W
(1)

1 |a〉 = eiπa|a〉
W

(2)

1 |a〉 = e−5iπa/3|a〉
W

(1)

2 |a〉 = |a − 3〉
W

(2)

2 |a〉 = |a + 1〉.

(31)
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As discussed previously, since onlyq ≡ e2π iK−1
IJ , with KIJ = K22, is a primitive rth

root of unity, the six states only form the basis of an irreducible cyclic representation of a
slq(2) algebra for theJ ’s constructed byW(2)

1 W
(2)

2 . The actions ofJ±,3 so constructed on
the vacuum states are evaluated to be

J+|a〉 = −[a + 1
2]q |a + 1〉

J−|a〉 = [a − 1
2]q |a − 1〉

q±2J3|a〉 = q±2a|a〉.
(32)

We note here that, unlike case I, the vacua|a〉 in this case do not form the basis of
irreducible cyclic representation for operatorsJ̄ obtained from theW̄i = W

(1)
i W

(2)
i . It

is easily checked that̄q = e2π i/3 (q̄3 = 1). Thus there are only three inequivalent states
in the irreducible cyclic representation of theslq̄ algebra generated by thēJ ’s. This is
related to the fact, as discussed in [16], that there exist only three inequivalent states in the
effective single CS theory withκeff = 3. The actions ofW̄2 on |a〉 are W̄2|a〉 = |a − 2〉,
which separate the six states into two groups:{|a〉; a = 0, 2, 4} and {|a〉; a = 1, 3, 5}. On
the other hand, by a similar argument given in [16], one can check that the states|a〉 and
|a + 3〉 are equivalent in the effective theory. That means the states{|0〉, |3〉}, {|1〉, |4〉}
and{|2〉, |5〉} correspond to the three distinct states in the effective theory. The Wilson line
operatorW̄2, and hence thēJ±’s, map states among these three groups.

Finally, we remark that the above discussions and results can be directly carried over
to the Maxwell–Chern–Simons theory with multiple kinds of CS fields and the related
fractional quantum Hall theory on a torus [17]. When the Maxwell terms are included,
the relevant operators are the so-called magnetic translation operators. Ground states form
the basis of an algebra satisfied by these translation operators, which are precisely the WH
group (5) obeyed by theWI

j ’s. Thus, while the actual forms of the ground states differ in
the two theories, the algebraic structures are exactly the same. So they also share the same
quantum group structures discussed in this letter.

This work is supported by Republic of China Grant NSC 85-2112-M-032-002.
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